

[ÜZLETÁGNEVE]
WHITEPAPER

„Black Cell Nyilvános!” 2

Detecting Domain Name
Generating Algorithms with

Neural Networks

Table of Contents
1.	 DOMAIN NAME GENERATING ALGORITHMS	 3	
2.	 DETECTION METHODS	 4	
1.1.	 ENTROPY	 4	
1.2.	 FEEDFORWARD NEURAL NETWORKS	 6	
1.2.1.	 Fully Connected Neural Networks	 10	
1.2.2.	 Convolutional Neural Network	 11	

1.3.	 RECURRENT NEURAL NETWORKS	 12	
1.3.1.	 Fully Recurrent Neural Networks	 13	
1.3.1.	 Long Short-Term Memory	 14	
1.3.2.	 Bidirectional Recurrent Neural Networks	 15	

1.4.	 HYBRID ARCHITECTURE	 16	
3.	 SUMMARY	 17	

„Black Cell Nyilvános!” 3

1. Domain Name Generating Algorithms
Domain Generating Algorithms (DGA) are a tool widely used by malware
developers, making it harder to detect or interfere with their malware’s
communication. Malware infections would be quite short-lived if they were
to use hardcoded domains or IP addresses for phoning home and receiving
commands. Security personnel could simply dump the hard coded domains and
pre-emptively feed them into a network blacklisting appliance in an
attempt to restrict outbound communication from infected hosts within a
victim’s infrastructure. To avoid this, DGAs are used to generate
hundreds or even tens of thousands (of which only a subset is actually
used for communication) of unique domains a day that can be used as
rendezvous points with the C&C server.
DGA’s are symmetric in the sense, that domains generated by the malware
will be (in most cases) identical to the domains generated by the C&C
server. The algorithms use some sort of seed to generate domains. For
example, earlier versions of the CryptoLocker malware family used the
current date to generate domains. Below you can see a Python
implementation of the DGA used by these early versions of CryptoLocker.
The algorithm takes a date, performs a number of bitwise operations on
the integers that make up a date, finally converting the produced
integers into the characters that make up the final domain name.

def generate_domain(year, month, day, length=32, tld=''):
 domain = ""
 for i in range(length):
 year = ((year ^ 8 * year) >> 11) ^ ((year & 0xFFFFFFF0) << 17)
 month = ((month ^ 4 * month) >> 25) ^ 16 * (month & 0xFFFFFFF8)
 day = ((day ^ (day << 13)) >> 19) ^ ((day & 0xFFFFFFFE) << 12)
 domain += chr(((year ^ month ^ day) % 25) + 97)

 domain += tld
 return domain

>> generate_domain(2021, 10, 12, tld='.com')
>> ovyvwnkjserklcrjwwhcpucyurwjaelg.com

CryptoLocker DGA with sample output.1

Malware utilizing DGAs are able to generate a large number of domains
daily, therefore it is infeasible to create a CTI (Cyber Threat Intel)
feed containing the newly generated domains of each new malware family.
Instead, we need to consider more sophisticated techniques that are able
classify whether or not a domain was produced by a DGA.

1	Taken	from:	https://github.com/endgameinc/dga_predict/blob/master/dga_classifier/dga_generators/cryptolocker.py	

„Black Cell Nyilvános!” 4

2. Detection Methods
DGA detection methods have been somewhat of a hot topic in recent months
and years. As mentioned above, we cannot simply create a set of all
possible generated domains and blacklist them. Instead, we need to
consider methods that can look at any given domain and determine whether
or not it was generated by a DGA. There has been much discussion among
Cybersecurity and Data Science experts about the best method of
classifying these domains. In the following sections of this paper, we
will be looking at a relatively simple approach leading into more complex
neural network-based approaches, including our own chosen method.

1.1. Entropy
Let’s take another look at the example domain produced by the previously
discussed DGA.

ovyvwnkjserklcrjwwhcpucyurwjaelg.com
A CryptoLocker domain.

Just by looking at this domain we can instinctively tell something isn’t
right. It’s almost as if someone “mashed” their keyboard when registering
a domain name. We get this feeling because each of the characters that
make up the domain seem randomly chosen.
In contrast, when we see a domain that consists of words from a natural
language, then we don’t get the sense that it was randomly generated,
even if the words are from a language we are unfamiliar with.

lecanardenchaine.fr
The domain of a French satirical newspaper.

The letters that form words in natural languages are not randomly
selected. In fact, it is really easy to calculate the probability of a
given letter occurring in a sequence, meaning that words in a natural
language aren’t very random.

„Black Cell Nyilvános!” 5

A letter frequency chart for the English language.2

As such, if we could simply quantify the “randomness” of a domain, then
we could figure out a “boundary” above which we can assume a domain was
randomly generated. Thankfully we are able to quantify the “randomness”
of a string, with the concept of Shannon’s entropy.
Shannon’s entropy quantifies the amount of “information” or “surprise” in
a variable. If a domain contains the letter “E” a lot, its entropy will
likely be lower, because “E” is the most common letter in the English
language, therefore it should occur more often and its presence will be
less of a surprise. On the other hand, if the domain contains a “J”s or a
“Z”s, its entropy will likely be higher as these letters are uncommon.

Shannon’s entropy formula.

This is all well and good, but how does it perform in the real world?
Using a real-world dataset containing both regular and algorithmically
generated domains, we calculated the entropy of each domain, and found an
optimal boundary value for classifying the domains. However, with this
method we were only able to achieve an achieve an accuracy between 60-
65%. That’s only 10-15% better than a random guess. But why does this
method of classification perform so poorly?
The truth is if it were this simple to detect DGAs, no one would use
them. As with any other technology, the creators of these algorithms
created newer and more advanced methods of generating domains. The

2	Taken	from:	http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html	

„Black Cell Nyilvános!” 6

previous CryptoLocker example is only one of many families of DGAs. Other
DGAs found a relatively simple way around the method we described above,
with the use of dictionaries. The below domains are examples generated by
the Suppobox family of DGAs. As you can see, they could easily be
legitimate domains.

journeyready.net

wouldinstead.net

sickhurry.net

darkhope.net

cloudthirteen.net

dutybegan.net

christianaashleigh.net
Example Suppobox domains.

These domains are generated by selecting random words from a dictionary
file and combining them together. Because they are made up of regular
natural language words, they do not exhibit the randomness of the
previous examples. Therefore, our previous entropy-based detection method
is not well suited to detect this different class of DGAs.
To detect these more sophisticated DGAs, we need to find some more
advanced detection methods that look at more features of the domains than
just entropy. There are many approaches, but for our own detection
capabilities we chose neural networks.

1.2. Feedforward Neural Networks
Many of us will have heard a lot about neural networks and all of their
fantastic applications. Let’s see if we could use neural networks to
build better detection methods for these more sophisticated DGAs. But
what exactly are neural networks? They are made up of a number of
interconnected artificial neurons, modelled on biological neural networks
such as those found in animal brains. This sounds quite esoteric, but at
its core it’s really quite simple. These artificial neurons simply take
the sum of some given inputs and pass it through a mathematical function
(sometimes a simple curve), producing an output. The output of the neuron
is then weighted and connected as the input to other neurons. Image the
weight applied to the output as a sort of “importance” or how much this
output should contribute to the final result produced by the network.
Hopefully a simple example will clear all of this up.

„Black Cell Nyilvános!” 7

A simple artificial neuron.

If you look at the above illustration you’ll see a number of inputs,
corresponding weightings, an activation function and an output. Let say
we want our neuron to be able to decide if the current weather
constitutes a storm or not. It will take values for the amount of rain,
wind and lightning currently observable. Rain doesn’t necessarily imply a
storm therefore we assign it a low weight. Wind however is a better
indicator of a potential storm; therefore, we assign it a higher wight.
Finally, if there’s lightning, we can be fairly certain there is a storm,
therefore we assign it the highest weight. For the sake of this example,
we will have the input values on a scale -1 to 1. For example, our rain
sensor produces a value of -1 when it is completely dry and 1 when it is
completely wet. Let say we currently have 0.5 units of rain, 0.75 units
of wind and 0.75 units of lightning. After applying the weights, we have
0.5 units of rain, 1.5 units of wind and 3 units of lightning, totalling
5 units. We pass this total into our activation function (in this case a
sigmoid function), to get our result.

Sigmoid activation function with results.

As you can see the activation produces a result of 0.99 (on a scale of 0
to 1) indicating we are very certain there is a storm. With different
inputs such as -0.75 units of rain, 1 units of clouds and -1 units of
lightning we get an output of 0.06 indicating there is no storm.
In our example we get reasonable outputs for each input. However, if it
were to produce inaccurate results, we could simply optimize the

„Black Cell Nyilvános!” 8

weightings on the inputs. This is where we begin to introduce the concept
of machine learning. If we have a collection of rain, wind and lightning
values with corresponding results we would like to see, we can begin
finding the optimum weights that will produce the desired output for each
input. This is essentially how we train neural networks. With a single
neuron this process is somewhat meaningless, but once we begin connecting
a network of these neurons, training the network will be very important.
Now that we have an understanding of how neurons work, lets see how we
can arrange these neurons in a network and begin to make predictions on
whether or not a domain was generated algorithmically. Soon, we will look
at some feedforward neural networks and the results we can achieve with
them. The term “feedforward” simply means the connections between the
neurons do not form a cycle.

An acyclic arrangement (left) and a cyclic arrangement (right) of

neurons.

In our previous storm assessment example, we used a neuron to create a
very simple relationship between three inputs and an output. If we begin
adding more of these neurons with even more inputs, we can start building
increasingly more complex relationships between the various features of
our input data. These relationships can become highly intricate, non-
linear and difficult to replicate by other means.
The optimizing or “training” of large networks happen similarly to our
aforementioned neuron example. We give the network a number of inputs and
an expected output and initialize the weights between the neurons
randomly. The network takes an input, passes it through each neuron and
calculates the output. We call this process forward propagation. We then
compare the produced result with our expected result and calculate the
error produced by our network. We can then calculate how much each
individual neuron contributes towards the total error produced and
optimize the weights between the neurons accordingly. In general,
networks are optimized by performing gradient descent on the loss
function (a function of the error produced by the network) in order to
find the minimum possible loss, indicating we have found the optimal
solution for predicting outputs. This process is called backwards
propagation and it’s done over many iterations with many input-output
pairs.

„Black Cell Nyilvános!” 9

It is important to note that through this process we aren’t finding the
ultimate all-knowing solution to predicting something, but rather we are
finding the best solution to map our previously collected inputs to our
outputs. This doesn’t necessarily mean if we give the network previously
unseen inputs, it will produce the correct output every time. This is
where things start to become tricky, because the lowest possible loss
does not mean the network is generalizable for other inputs. If our
network perfectly predicts the solutions for each input during training,
but often gets previously unseen inputs wrong, we are experiencing a
problem called over-fitting.
Because neural networks learn from the data we feed it, we need to be
sure we create a good dataset. Remember, “garbage in, garbage out”. In
most cases want our dataset to be as large as possible and for the data
to be a good representation of all possible inputs.
We now have a pretty good high-level understanding of how neural networks
work. But we still need to discuss a few things before we can begin
predicting DGAs. If we think back to our storm example we used a bunch of
numeric inputs, but with DGAs we only have text, which we cannot simply
pass into a neural network. First, we need to do some pre-processing to
turn our text into numeric values. We could do something simple like use
the ASCII values of each character, but this probably won’t do us much
good.
If we think back to the storm example, we used attributes of the weather
such as the amount of rain, instead of passing in the exact
meteorological state of the world. Similarly, we want to not only turn
domains into numerical values, but we also want to it in a way that
preserves information we want to learn from, or even extract certain
features of the domains whilst getting rid of unimportant information.
One of the features that could be interesting to use in a neural network
is the topic we started this paper with, entropy.
If we were to go into all the computation linguistic methods of
extracting features from text, we would be straying dangerously far from
the topic at hand. For our examples we will be simply converting domains
into n-grams of letters and one-hot encoding them. N-grams are a
computational linguistic model, dealing with sequences of n items, where
the items could be things like words or symbols. For the purposes of
this paper, it is enough if we know our domains are broken down into
numerical values, that preserve the information contained in the original
string.

„Black Cell Nyilvános!” 10

1.2.1. Fully Connected Neural Networks
Now that we know how to process our domains, the last consideration we
should discuss is how we arrange and connect the neurons in our network.
Neurons in a network are typically arranged in layers with the neurons in
each layer connected to each subsequent layer in some fashion. The
easiest way we can connect neurons would be to simply connect every
neuron in one layer to each neuron in the next layer.

A fully connected neural network.3

This is what we call fully connected neural networks. We now know
everything we need to construct our neural network in our framework of
choice. In our testing we were able to achieve between 79-81% accuracy
with a simple fully connected neural network with only 2 hidden layers.
Below you can find the TensorFlow output for the first 5 epochs of
training. Epochs are the number of times the whole dataset has been
processed during training.

3	Adapted	from:	https://upload.wikimedia.org/wikipedia/commons/e/e1/MultiLayerNeuralNetwork.png	

„Black Cell Nyilvános!” 11

Epoch 1/15

38462/38462 [==============================] - 223s 6ms/step - loss: 0.5188 - accuracy: 0.7323

Epoch 2/15

38462/38462 [==============================] - 227s 6ms/step - loss: 0.4767 - accuracy: 0.7662

Epoch 3/15

38462/38462 [==============================] - 228s 6ms/step - loss: 0.4549 - accuracy: 0.7825

Epoch 4/15

38462/38462 [==============================] - 232s 6ms/step - loss: 0.4400 - accuracy: 0.7932

Epoch 5/15

38462/38462 [==============================] - 228s 6ms/step - loss: 0.4285 - accuracy: 0.8007
Training data for a fully connected neural network.

This is a huge improvement over a purely entropy-based approach, but
there is still a lot of room for improvement. Fully connected networks
can yield good results depending on the application, but are prone to
overfitting and there are plenty of more sophisticated models we can
explore.

1.2.2. Convolutional Neural Network
With our fully connected neural network we were able to achieve decent
results, but let’s see if we can find some better ways in which we can
arrange and interconnect the neurons in our network. One of the methods
we can employ is the use of kernel filters. Instead of connecting every
neuron together, we can shift a filter of a certain size (3x3 for
example) across the input layer and map the numerous inputs covered by
the filter to a single (or multiple) neuron(s) in the next layer.

An example of a kernel filter moving across the input data in a

convolutional neural network.4

4	Taken	from:	https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_Padding_strides.gif	

„Black Cell Nyilvános!” 12

As you may be able to guess from the above figure, these networks are
especially well suited to image recognition tasks. This is because the
use of kernel filters puts a greater emphasis on very localized features
of an image instead of focusing on an image as a whole. Often, we also
include a number of fully connected layers at the end of convolutional
models, to both make sure we can map to the desired output size and also
to allow for interconnection of the results of the convolutional layers.
Convolutional networks are also sometimes used in natural language
processing, because much like with image processing, our network can put
emphasis on subsections of the input text. We also do not necessarily
need to use 2 dimensional inputs as convolution can also be applied in
1D.
In our testing we created a simple convolutional network with a fully
connected layer at the end and used the same dataset for training as we
did with the fully connected network. Although we didn’t spend much time
optimizing our model, it was clear from the start, that we weren’t going
to get very good results. In our testing we were only able to achieve an
accuracy of up to 65%. Not much better that entropy alone. It seems our
domains are better analysed as a whole, probably because they are not big
enough, therefore the spatial structure of our data is less important.

Epoch 1/15

38462/38462 [==============================] - 515s 13ms/step - loss: 0.6435 - accuracy: 0.6449

Epoch 2/15

38462/38462 [==============================] - 511s 13ms/step - loss: 0.6413 - accuracy: 0.6457

Epoch 3/15

38462/38462 [==============================] - 513s 13ms/step - loss: 0.6400 - accuracy: 0.6458

Epoch 4/15

38462/38462 [==============================] - 513s 13ms/step - loss: 0.6389 - accuracy: 0.6459

Epoch 5/15

38462/38462 [==============================] - 515s 13ms/step - loss: 0.6381 - accuracy: 0.6460
Training data for a convolutional neural network.

1.3. Recurrent Neural Networks
You might be wondering why we made the distinction between cyclic and
acyclic networks earlier. There is a very good reason for this, but first
we need to understand the processing of temporal data. Staying on the
theme of weather prediction, lets imagine we want to predict whether or
not it is going to rain soon, based on the position of storm clouds. If
we have data that shows us that a cloud’s position is moving towards us,
the probability of rain increases. But if we take a snapshot of this
continuous data, the cloud is stationary and we would need to essentially
guess which way it is moving. We need to somehow use the information from
previous data samples to be able to infer where a cloud is moving. To do
this with neural networks we essentially need to add memory to neurons,
to be able to remember information from previous time steps. The data
added in to subsequent time steps is called the hidden state.
Text can also be sequential data. Think of the sentence “Is it raining?”.
Looking at any of the words individually, we cannot determine the

„Black Cell Nyilvános!” 13

intention of the text. With the word “is” we know we are talking about
the existence of something. When we retain memory of the word “is” and
combine it with the word “it” we can deduce we are questioning the
existence of something. If we remember the last two words and combine it
with the word “raining” we now know the meaning of our sentence. If we
were looking at the word “raining” without the context of the previous
two words, we wouldn’t know we were asking about the presence of rain.
This ability to learn contextual information based on previous characters
will be incredibly useful when we want to detect DGAs generated with the
use of dictionaries.

1.3.1. Fully Recurrent Neural Networks

We can implement this memory in neural networks in a number of ways, but
one of the simplest examples are fully recurrent neural networks. Here
each neuron simply passes information to every other neuron in subsequent
time steps.

A visualization of a recurrent neural network.5

Unfortunately, as standard RNN’s are particularly popular, TensorFlow
doesn’t have optimized GPU kernels for this specific type of neural
network, therefore we had to restrict the training of this neural network
somewhat. Nonetheless, with a simple fully recurrent neural network we
were able to achieve accuracies of up to 91%.

Epoch 1/15

4425/4425 [==============================] - 886s 195ms/step - loss: 0.3288 - accuracy: 0.8507

Epoch 2/15

4425/4425 [==============================] - 865s 196ms/step - loss: 0.2734 - accuracy: 0.8829

Epoch 3/15

4425/4425 [==============================] - 864s 195ms/step - loss: 0.2486 - accuracy: 0.8951

Epoch 4/15

4425/4425 [==============================] - 864s 195ms/step - loss: 0.2297 - accuracy: 0.9037

Epoch 5/15

4425/4425 [==============================] - 864s 195ms/step - loss: 0.2176 - accuracy: 0.9092
Training data for a fully recurrent neural network.

5	Adapted	from:	https://commons.wikimedia.org/wiki/File:RecurrentLayerNeuralNetwork.png	

„Black Cell Nyilvános!” 14

1.3.1. Long Short-Term Memory
The results we were able to achieve with fully recurrent networks were
good, but there is a problem going on behind the scenes. The information
passed from one timestep to the next, is the aggregation of all the
information from previous timesteps. As you can see on the below image,
the information from the first iteration is less and less predominant
with each iteration. For example, with a really long question, by the end
of the sentence we can barely remember the sentence started with a
“what”, making it difficult to deduce the intention of a sentence.

A visualization of short-term memory.6

This problem is called short-term memory, which is caused by the
vanishing gradient problem during backpropagation. The impact of the
information learned in earlier iterations, decreases exponentially with
each subsequent iteration. To combat this we can add gates, to the neural
network which store the hidden state over multiple timesteps. This way,
information learned in the first timestep can be reintroduced in much
later timesteps, preventing this information from being diminished or
even lost.
Using a long short-term memory neural network, we were able to achieve
accuracies up to 93%. These results are fantastic, but we can still make
improvements.

Epoch 1/15

38462/38462 [==============================] - 646s 17ms/step - loss: 0.3196 - accuracy: 0.8512

Epoch 2/15

38462/38462 [==============================] - 638s 17ms/step - loss: 0.2366 - accuracy: 0.8968

Epoch 3/15

38462/38462 [==============================] - 637s 17ms/step - loss: 0.2055 - accuracy: 0.9110

Epoch 4/15

38462/38462 [==============================] - 638s 17ms/step - loss: 0.1867 - accuracy: 0.9193

Epoch 5/15

38462/38462 [==============================] - 637s 17ms/step - loss: 0.1715 - accuracy: 0.9262
Training data for an LSTM neural network.

6	Adapted	from:	https://www.youtube.com/watch?v=LHXXI4-IEns	

„Black Cell Nyilvános!” 15

1.3.2. Bidirectional Recurrent Neural Networks
As we discussed earlier recurrent neural networks are great because they
allow for information to be remembered. But with the examples we looked
at so far neurons can only learn from previous timesteps, but not future
ones. But what if they could? To do this we can use something called a
bidirectional recurrent neural network. These networks use two layers
that process the input in different directions in time to produce one
single output.

A visualization of a bidirectional recurrent neural network.7

As you can see in the above image, one layer processes the text in a
positive time direction, and another layer processes the text in a
negative time direction. We then combine the results from the two layers
to produce an output. With this architecture, neurons are able to use
contextual information from both directions. We can also use the
previously discussed long short-term memory in this architecture as well
to help with the vanishing gradient problem.
With a bidirectional long short-term memory neural network, we were able
to achieve 94% accuracy. These results are nearing a production ready
model, that we could use to reliably detect DGAs.

Epoch 1/15

38462/38462 [==============================] - 927s 24ms/step - loss: 0.3185 - accuracy: 0.8621

Epoch 2/15

38462/38462 [==============================] - 913s 24ms/step - loss: 0.2326 - accuracy: 0.9083

Epoch 3/15

38462/38462 [==============================] - 920s 24ms/step - loss: 0.2006 - accuracy: 0.9223

Epoch 4/15

38462/38462 [==============================] - 920s 24ms/step - loss: 0.1804 - accuracy: 0.9301

Epoch 5/15

38462/38462 [==============================] - 920s 24ms/step - loss: 0.1656 - accuracy: 0.9377
Training data for a bidirectional LSTM neural network.

7	Adapted	from:	https://commons.wikimedia.org/wiki/File:Structural_diagrams_of_unidirectional_and_bidirectional_recurrent_neural_networks.png	

„Black Cell Nyilvános!” 16

1.4. Hybrid architecture
We have discussed a lot of neural network architectures with varying
results, but please remember that these architectures apply to layers
that we can mix and match as we please. For example, there’s nothing
stopping us from putting convolutional layers in front of a long short-
term memory layer.

A neural network with convolutional, long short-term memory and fully

connected layers.

You can experiment by combining any number of different layers to achieve
the best results possible. This is exactly what we did to create our own
in-house detection capabilities. Surprisingly, we ended up using
convolutional layers with a number of other layers, even though in our
earlier test convolutional networks performed the worst. The combination
of layers that perform the best for your dataset may very well surprise
you. With our combination of various neural network architectures, we
were able to achieve an accuracy of up to 98%, however we found that
models with accuracies between 96-97% were more generalizable and did not
suffer too much from overfitting. Below you can see our results with a
larger training dataset over the first 5 epochs.

Epoch 1/15

196713/196713 [==============================] - 4719s 24ms/step - loss: 0.1662 - accuracy: 0.9359

Epoch 2/15

196713/196713 [==============================] - 4718s 24ms/step - loss: 0.1298 - accuracy: 0.9514

Epoch 3/15

196713/196713 [==============================] - 4720s 24ms/step - loss: 0.1182 - accuracy: 0.9563

Epoch 4/15

196713/196713 [==============================] - 4721s 24ms/step - loss: 0.1118 - accuracy: 0.9589

Epoch 5/15

196713/196713 [==============================] - 4728s 24ms/step - loss: 0.1076 - accuracy: 0.9605
Training data for our custom neural network.

„Black Cell Nyilvános!” 17

3. Summary

In this paper we had a look at what domain generating algorithms are and
why they are used. We looked at the domains’ structure and some basic
approaches for detecting them. We then dove into the world of neural
networks to see how they work and how good they are at detecting DGAs. We
went into quite a bit of depth, but naturally we had to omit some of the
gritty details. Hopefully you now have a better understanding of DGAs and
neural networks. Below you can find a summary of the results we were able
to achieve. Of course, there are many (often better) metrics than simple
accuracy, but for now it should give us a good indication of a model’s
performance.

Entropy FCNN CNN FRNN LSTM BiLSTM Combination
60-65% 79-81% 64-65% 90-91% 92-93% 93-94% 96-98%

Accuracy results for the various neural network architectures we had a look

at.

When developing our own model, we worked with many publicly available,
closed source and custom datasets during training. Our datasets in total
took tens of gigabytes of disk space and contained in excess of a 150
million domain names. One of the datasets we used for validation
contained samples from 92 known malware families. Below you can see a
table containing the validation results for the aforementioned malware
families.

„Black Cell Nyilvános!” 18

DGA Family Accurac
y DGA Family Accurac

y DGA Family Accurac
y DGA Family Accurac

y
bamital 100.00% pandabanker 99.99% feodo 100.00% suppobox 99.74%

banjori 99.97% pitou 65.49% fobber 98.70% sutra 99.31%

bedep 99.40% proslikefan 93.81% gameover 99.92% symmi 87.69%

beebone 100.00% pushdotid 95.98% gameover_p2p 99.99% szribi 94.54%

blackhole 100.00% pushdo 90.12% gozi 95.86% tempedrevetd
d

96.23%

bobax 98.00% pykspa2s 99.06% goznym 91.76% tempedreve 96.08%

ccleaner 100.00% pykspa2 99.34% gspy 100.00% tinba 99.44%

chinad 99.79% pykspa 97.47% hesperbot 94.38% tinynuke 99.63%

chir 100.00% qadars 99.68% infy 99.84% tofsee 98.40%

conficker 97.10% qakbot 99.45% locky 94.11% torpig 89.89%

corebot 99.64% qhost 60.87% madmax 99.74% tsifiri 100.00%
cryptolocke

r 99.43% qsnatch 42.93% makloader 100.00% ud2 100.00%

darkshell 87.76% ramdo 99.98% matsnu 74.42% ud3 95.00%

diamondfox 76.96% ramnit 97.67% mirai 95.71% ud4 91.00%

dircrypt 97.83% ranbyus 99.75% modpack 86.88% urlzone 98.67%

dmsniff 91.00% randomloade
r 100.00% monerominer 99.99% vawtrak 94.85%

dnsbenchmar
k

100.00% redyms 100.00% murofetweekl
y

99.99% vidrotid 98.33%

dnschanger 97.20% rovnix 99.83% murofet 99.79% vidro 97.40%

dyre 99.92% shifu 97.90% mydoom 93.65% virut 97.69%

ebury 99.95% simda 97.49% necurs 97.39% volatileceda
r

94.18%

ekforward 99.73% sisron 100.00% nymaim2 67.74% wd 100.00%

emotet 99.88% sphinx 99.73% nymaim 91.32% xshellghost 100.00%

omexo 100.00% padcrypt 99.33% oderoor 97.92% xxhex 100.00%

The prediction accuracies of our model, per malware family.

As a comparison we decided to test the accuracy of the simple entropy-
based detection method we started this paper with. We took the same
dataset, we trained our neural network with and created a balanced
version of it, meaning there were equal DGA and non-DGA domains. This is
important because an unbalanced dataset would very heavily skew the
results in the case of the entropy-based method. With neural networks
it’s less important to use a balanced dataset, as it can be both a
benefit and a detriment depending on the scenario. In most cases you
should start with an equal number of samples (where possible), but you
can change the balance of the different classes as you see fit. We then
calculated our optimal boundary value, and used it to make predictions
for our validation dataset.

„Black Cell Nyilvános!” 19

DGA Family Accurac
y DGA Family Accurac

y DGA Family Accurac
y DGA Family Accurac

y
bamital 97.40% pandabanker 38.69% feodo 89.58% suppobox 13.37%

banjori 77.43% pitou 0.01% fobber 56.20% sutra 57.33%

bedep 78.26% proslikefan 5.96% gameover 99.99% symmi 43.93%

beebone 40.95% pushdotid 15.42% gameover_p2p 99.55% szribi 4.90%

blackhole 80.02% pushdo 10.13% gozi 58.97% tempedrevetd
d

9.20%

bobax 47.67% pykspa2s 25.92% goznym 15.11% tempedreve 20.10%

ccleaner 19.23% pykspa2 26.37% gspy 63.27% tinba 33.36%

chinad 96.40% pykspa 18.66% hesperbot 43.82% tinynuke 99.23%

chir 51.00% qadars 78.16% infy 10.35% tofsee 0.00%

conficker 9.83% qakbot 72.14% locky 39.63% torpig 6.94%

corebot 95.16% qhost 26.09% madmax 37.89% tsifiri 0.00%
cryptolocke

r 63.56% qsnatch 0.14% makloader 100.00% ud2 93.93%

darkshell 0.00% ramdo 16.18% matsnu 46.87% ud3 88.33%

diamondfox 2.92% ramnit 54.79% mirai 67.14% ud4 4.00%

dircrypt 56.96% ranbyus 70.03% modpack 9.38% urlzone 64.79%

dmsniff 4.00% randomloade
r 20.00% monerominer 78.20% vawtrak 10.19%

dnsbenchmar
k

100.00% redyms 67.65% murofetweekl
y

100.00% vidrotid 32.67%

dnschanger 18.65% rovnix 97.87% murofet 68.08% vidro 37.65%

dyre 98.60% shifu 7.16% mydoom 0.64% virut 0.00%

ebury 85.20% simda 3.12% necurs 53.97% volatileceda
r

65.86%

ekforward 0.00% sisron 11.82% nymaim2 36.40% wd 99.79%

emotet 77.75% sphinx 80.71% nymaim 12.63% xshellghost 54.00%

omexo 100.00% padcrypt 3.77% oderoor 13.92% xxhex 0.00%

The prediction accuracies of a simple entropy-based detection method, per

malware family.

As you can see the results are substantially worse than our neural
network model, and as we discussed earlier in the paper, it cannot handle
natural language domains. It also struggles with very short domains,
where there is not enough information to make a good prediction and the
accuracy begins to devolve to a random guess or even worse.
We often associate machine learning with graphics cards or even tensor
processing units, and you may assume that our detection method would
consume a load of resources to make predictions. However, this is not
really the case. We tested the throughput of our Splunk search command
implementation and summarized the results you can expect with regular
server hardware below. As you can see no special hardware is required to
run these detection methods. Keep in mind that these throughputs are
measured with unique domains. In a real-world scenario, with
deduplication and a whitelist, you will struggle to saturate even a
single vCPU.

„Black Cell Nyilvános!” 20

vCPU Minimum RAM Throughput
1 2 GB ~ 28.000 domains /

minute
2 3 GB ~ 62.000 domains /

minute
4 4 GB ~ 108.000 domains /

minute
8 4 GB ~ 188.000 domains /

minute
16 7 GB ~ 300.000 domains /

minute

We use these very methodologies to detect DGAs in our Fusion Center. We
research and develop many other tools, both in the field of machine
learning and other new technologies, to help secure our client’s
infrastructures. To find out more about our Fusion Center and how it
differs from a regular SOC, visit https://blackcell.io/cyber-fusion-
center/.

