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1. Domain Name Generating Algorithms 
Domain Generating Algorithms (DGA) are a tool widely used by malware 
developers, making it harder to detect or interfere with their malware’s 
communication. Malware infections would be quite short-lived if they were 
to use hardcoded domains or IP addresses for phoning home and receiving 
commands. Security personnel could simply dump the hard coded domains and 
pre-emptively feed them into a network blacklisting appliance in an 
attempt to restrict outbound communication from infected hosts within a 
victim’s infrastructure. To avoid this, DGAs are used to generate 
hundreds or even tens of thousands (of which only a subset is actually 
used for communication) of unique domains a day that can be used as 
rendezvous points with the C&C server.  
DGA’s are symmetric in the sense, that domains generated by the malware 
will be (in most cases) identical to the domains generated by the C&C 
server. The algorithms use some sort of seed to generate domains. For 
example, earlier versions of the CryptoLocker malware family used the 
current date to generate domains. Below you can see a Python 
implementation of the DGA used by these early versions of CryptoLocker. 
The algorithm takes a date, performs a number of bitwise operations on 
the integers that make up a date, finally converting the produced 
integers into the characters that make up the final domain name. 
 
 
def generate_domain(year, month, day, length=32, tld=''): 
   domain = "" 
   for i in range(length): 
      year = ((year ^ 8 * year) >> 11) ^ ((year & 0xFFFFFFF0) << 17) 
      month = ((month ^ 4 * month) >> 25) ^ 16 * (month & 0xFFFFFFF8) 
      day = ((day ^ (day << 13)) >> 19) ^ ((day & 0xFFFFFFFE) << 12) 
      domain += chr(((year ^ month ^ day) % 25) + 97) 
 
   domain += tld 
   return domain 
 
   
 
>> generate_domain(2021, 10, 12, tld='.com') 
>> ovyvwnkjserklcrjwwhcpucyurwjaelg.com 

 
CryptoLocker DGA with sample output.1 

 
Malware utilizing DGAs are able to generate a large number of domains 
daily, therefore it is infeasible to create a CTI (Cyber Threat Intel) 
feed containing the newly generated domains of each new malware family. 
Instead, we need to consider more sophisticated techniques that are able 
classify whether or not a domain was produced by a DGA. 
  

                                                             
1	Taken	from:	https://github.com/endgameinc/dga_predict/blob/master/dga_classifier/dga_generators/cryptolocker.py	
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2. Detection Methods 
DGA detection methods have been somewhat of a hot topic in recent months 
and years. As mentioned above, we cannot simply create a set of all 
possible generated domains and blacklist them. Instead, we need to 
consider methods that can look at any given domain and determine whether 
or not it was generated by a DGA. There has been much discussion among 
Cybersecurity and Data Science experts about the best method of 
classifying these domains. In the following sections of this paper, we 
will be looking at a relatively simple approach leading into more complex 
neural network-based approaches, including our own chosen method. 

1.1. Entropy 
Let’s take another look at the example domain produced by the previously 
discussed DGA. 
 
 

ovyvwnkjserklcrjwwhcpucyurwjaelg.com 
A CryptoLocker domain. 

 

Just by looking at this domain we can instinctively tell something isn’t 
right. It’s almost as if someone “mashed” their keyboard when registering 
a domain name. We get this feeling because each of the characters that 
make up the domain seem randomly chosen.  
In contrast, when we see a domain that consists of words from a natural 
language, then we don’t get the sense that it was randomly generated, 
even if the words are from a language we are unfamiliar with. 
 
 

lecanardenchaine.fr 
The domain of a French satirical newspaper. 

 

The letters that form words in natural languages are not randomly 
selected. In fact, it is really easy to calculate the probability of a 
given letter occurring in a sequence, meaning that words in a natural 
language aren’t very random.  
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A letter frequency chart for the English language.2 

As such, if we could simply quantify the “randomness” of a domain, then 
we could figure out a “boundary” above which we can assume a domain was 
randomly generated. Thankfully we are able to quantify the “randomness” 
of a string, with the concept of Shannon’s entropy.  
Shannon’s entropy quantifies the amount of “information” or “surprise” in 
a variable. If a domain contains the letter “E” a lot, its entropy will 
likely be lower, because “E” is the most common letter in the English 
language, therefore it should occur more often and its presence will be 
less of a surprise. On the other hand, if the domain contains a “J”s or a 
“Z”s, its entropy will likely be higher as these letters are uncommon. 

 
Shannon’s entropy formula. 

This is all well and good, but how does it perform in the real world? 
Using a real-world dataset containing both regular and algorithmically 
generated domains, we calculated the entropy of each domain, and found an 
optimal boundary value for classifying the domains. However, with this 
method we were only able to achieve an achieve an accuracy between 60-
65%. That’s only 10-15% better than a random guess. But why does this 
method of classification perform so poorly?  
The truth is if it were this simple to detect DGAs, no one would use 
them. As with any other technology, the creators of these algorithms 
created newer and more advanced methods of generating domains. The  
 
 
 

                                                             
2	Taken	from:	http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html	
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previous CryptoLocker example is only one of many families of DGAs. Other 
DGAs found a relatively simple way around the method we described above,  
with the use of dictionaries. The below domains are examples generated by 
the Suppobox family of DGAs. As you can see, they could easily be 
legitimate domains.  

journeyready.net 

wouldinstead.net 

sickhurry.net 

darkhope.net 

cloudthirteen.net 

dutybegan.net 

christianaashleigh.net 
Example Suppobox domains. 

These domains are generated by selecting random words from a dictionary 
file and combining them together. Because they are made up of regular 
natural language words, they do not exhibit the randomness of the 
previous examples. Therefore, our previous entropy-based detection method 
is not well suited to detect this different class of DGAs.  
To detect these more sophisticated DGAs, we need to find some more 
advanced detection methods that look at more features of the domains than 
just entropy. There are many approaches, but for our own detection 
capabilities we chose neural networks.  

1.2. Feedforward Neural Networks 
Many of us will have heard a lot about neural networks and all of their 
fantastic applications. Let’s see if we could use neural networks to 
build better detection methods for these more sophisticated DGAs. But 
what exactly are neural networks? They are made up of a number of 
interconnected artificial neurons, modelled on biological neural networks 
such as those found in animal brains. This sounds quite esoteric, but at 
its core it’s really quite simple. These artificial neurons simply take 
the sum of some given inputs and pass it through a mathematical function 
(sometimes a simple curve), producing an output. The output of the neuron 
is then weighted and connected as the input to other neurons. Image the 
weight applied to the output as a sort of “importance” or how much this 
output should contribute to the final result produced by the network. 
Hopefully a simple example will clear all of this up. 
 

 

 

 

 

 

 

 



 

„Black Cell Nyilvános!” 7 

 

 

 

 
A simple artificial neuron. 

If you look at the above illustration you’ll see a number of inputs, 
corresponding weightings, an activation function and an output. Let say 
we want our neuron to be able to decide if the current weather 
constitutes a storm or not. It will take values for the amount of rain, 
wind and lightning currently observable. Rain doesn’t necessarily imply a 
storm therefore we assign it a low weight. Wind however is a better 
indicator of a potential storm; therefore, we assign it a higher wight. 
Finally, if there’s lightning, we can be fairly certain there is a storm, 
therefore we assign it the highest weight. For the sake of this example, 
we will have the input values on a scale -1 to 1. For example, our rain 
sensor produces a value of -1 when it is completely dry and 1 when it is 
completely wet. Let say we currently have 0.5 units of rain, 0.75 units 
of wind and 0.75 units of lightning. After applying the weights, we have 
0.5 units of rain, 1.5 units of wind and 3 units of lightning, totalling 
5 units. We pass this total into our activation function (in this case a 
sigmoid function), to get our result. 
 

 
Sigmoid activation function with results. 

As you can see the activation produces a result of 0.99 (on a scale of 0 
to 1) indicating we are very certain there is a storm. With different 
inputs such as -0.75 units of rain, 1 units of clouds and -1 units of 
lightning we get an output of 0.06 indicating there is no storm. 
In our example we get reasonable outputs for each input. However, if it 
were to produce inaccurate results, we could simply optimize the  
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weightings on the inputs. This is where we begin to introduce the concept 
of machine learning. If we have a collection of rain, wind and lightning 
values with corresponding results we would like to see, we can begin 
finding the optimum weights that will produce the desired output for each 
input. This is essentially how we train neural networks. With a single 
neuron this process is somewhat meaningless, but once we begin connecting 
a network of these neurons, training the network will be very important. 
Now that we have an understanding of how neurons work, lets see how we 
can arrange these neurons in a network and begin to make predictions on 
whether or not a domain was generated algorithmically. Soon, we will look 
at some feedforward neural networks and the results we can achieve with 
them. The term “feedforward” simply means the connections between the 
neurons do not form a cycle. 

 
An acyclic arrangement (left) and a cyclic arrangement (right) of 

neurons. 

In our previous storm assessment example, we used a neuron to create a 
very simple relationship between three inputs and an output. If we begin 
adding more of these neurons with even more inputs, we can start building 
increasingly more complex relationships between the various features of 
our input data. These relationships can become highly intricate, non-
linear and difficult to replicate by other means.  
The optimizing or “training” of large networks happen similarly to our 
aforementioned neuron example. We give the network a number of inputs and 
an expected output and initialize the weights between the neurons 
randomly. The network takes an input, passes it through each neuron and 
calculates the output. We call this process forward propagation. We then 
compare the produced result with our expected result and calculate the 
error produced by our network. We can then calculate how much each 
individual neuron contributes towards the total error produced and 
optimize the weights between the neurons accordingly. In general, 
networks are optimized by performing gradient descent on the loss 
function (a function of the error produced by the network) in order to 
find the minimum possible loss, indicating we have found the optimal 
solution for predicting outputs. This process is called backwards 
propagation and it’s done over many iterations with many input-output 
pairs.  
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It is important to note that through this process we aren’t finding the 
ultimate all-knowing solution to predicting something, but rather we are 
finding the best solution to map our previously collected inputs to our 
outputs. This doesn’t necessarily mean if we give the network previously 
unseen inputs, it will produce the correct output every time. This is 
where things start to become tricky, because the lowest possible loss 
does not mean the network is generalizable for other inputs. If our 
network perfectly predicts the solutions for each input during training, 
but often gets previously unseen inputs wrong, we are experiencing a 
problem called over-fitting. 
Because neural networks learn from the data we feed it, we need to be 
sure we create a good dataset. Remember, “garbage in, garbage out”. In 
most cases want our dataset to be as large as possible and for the data 
to be a good representation of all possible inputs. 
We now have a pretty good high-level understanding of how neural networks 
work. But we still need to discuss a few things before we can begin 
predicting DGAs. If we think back to our storm example we used a bunch of 
numeric inputs, but with DGAs we only have text, which we cannot simply 
pass into a neural network. First, we need to do some pre-processing to 
turn our text into numeric values. We could do something simple like use 
the ASCII values of each character, but this probably won’t do us much 
good.  
If we think back to the storm example, we used attributes of the weather 
such as the amount of rain, instead of passing in the exact 
meteorological state of the world. Similarly, we want to not only turn 
domains into numerical values, but we also want to it in a way that 
preserves information we want to learn from, or even extract certain 
features of the domains whilst getting rid of unimportant information. 
One of the features that could be interesting to use in a neural network 
is the topic we started this paper with, entropy.  
If we were to go into all the computation linguistic methods of 
extracting features from text, we would be straying dangerously far from 
the topic at hand. For our examples we will be simply converting domains 
into n-grams of letters and one-hot encoding them. N-grams are a 
computational linguistic model, dealing with sequences of n items, where 
the items could be things like words or symbols.  For the purposes of 
this paper, it is enough if we know our domains are broken down into 
numerical values, that preserve the information contained in the original 
string. 
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1.2.1. Fully Connected Neural Networks 
Now that we know how to process our domains, the last consideration we 
should discuss is how we arrange and connect the neurons in our network. 
Neurons in a network are typically arranged in layers with the neurons in 
each layer connected to each subsequent layer in some fashion. The 
easiest way we can connect neurons would be to simply connect every 
neuron in one layer to each neuron in the next layer.  
 
 

 
A fully connected neural network.3 

 
 
This is what we call fully connected neural networks. We now know 
everything we need to construct our neural network in our framework of 
choice. In our testing we were able to achieve between 79-81% accuracy 
with a simple fully connected neural network with only 2 hidden layers. 
Below you can find the TensorFlow output for the first 5 epochs of 
training. Epochs are the number of times the whole dataset has been 
processed during training. 
  

                                                             
3	Adapted	from:	https://upload.wikimedia.org/wikipedia/commons/e/e1/MultiLayerNeuralNetwork.png	
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Epoch 1/15 

38462/38462 [==============================] - 223s 6ms/step - loss: 0.5188 - accuracy: 0.7323 

Epoch 2/15 

38462/38462 [==============================] - 227s 6ms/step - loss: 0.4767 - accuracy: 0.7662 

Epoch 3/15 

38462/38462 [==============================] - 228s 6ms/step - loss: 0.4549 - accuracy: 0.7825 

Epoch 4/15 

38462/38462 [==============================] - 232s 6ms/step - loss: 0.4400 - accuracy: 0.7932 

Epoch 5/15 

38462/38462 [==============================] - 228s 6ms/step - loss: 0.4285 - accuracy: 0.8007 
Training data for a fully connected neural network. 

This is a huge improvement over a purely entropy-based approach, but 
there is still a lot of room for improvement. Fully connected networks 
can yield good results depending on the application, but are prone to 
overfitting and there are plenty of more sophisticated models we can 
explore. 

1.2.2. Convolutional Neural Network 
With our fully connected neural network we were able to achieve decent 
results, but let’s see if we can find some better ways in which we can 
arrange and interconnect the neurons in our network. One of the methods 
we can employ is the use of kernel filters. Instead of connecting every 
neuron together, we can shift a filter of a certain size (3x3 for 
example) across the input layer and map the numerous inputs covered by 
the filter to a single (or multiple) neuron(s) in the next layer. 

   

 

   

 

   

 

An example of a kernel filter moving across the input data in a 

convolutional neural network.4 

 

                                                             
4	Taken	from:	https://commons.wikimedia.org/wiki/File:Convolution_arithmetic_-_Padding_strides.gif	
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As you may be able to guess from the above figure, these networks are 
especially well suited to image recognition tasks. This is because the 
use of kernel filters puts a greater emphasis on very localized features 
of an image instead of focusing on an image as a whole. Often, we also 
include a number of fully connected layers at the end of convolutional 
models, to both make sure we can map to the desired output size and also 
to allow for interconnection of the results of the convolutional layers.  
Convolutional networks are also sometimes used in natural language 
processing, because much like with image processing, our network can put 
emphasis on subsections of the input text. We also do not necessarily 
need to use 2 dimensional inputs as convolution can also be applied in 
1D. 
In our testing we created a simple convolutional network with a fully 
connected layer at the end and used the same dataset for training as we 
did with the fully connected network. Although we didn’t spend much time 
optimizing our model, it was clear from the start, that we weren’t going 
to get very good results. In our testing we were only able to achieve an 
accuracy of up to 65%. Not much better that entropy alone. It seems our 
domains are better analysed as a whole, probably because they are not big 
enough, therefore the spatial structure of our data is less important. 
 

Epoch 1/15 

38462/38462 [==============================] - 515s 13ms/step - loss: 0.6435 - accuracy: 0.6449 

Epoch 2/15 

38462/38462 [==============================] - 511s 13ms/step - loss: 0.6413 - accuracy: 0.6457 

Epoch 3/15 

38462/38462 [==============================] - 513s 13ms/step - loss: 0.6400 - accuracy: 0.6458 

Epoch 4/15 

38462/38462 [==============================] - 513s 13ms/step - loss: 0.6389 - accuracy: 0.6459 

Epoch 5/15 

38462/38462 [==============================] - 515s 13ms/step - loss: 0.6381 - accuracy: 0.6460 
Training data for a convolutional neural network. 

 

1.3. Recurrent Neural Networks 
You might be wondering why we made the distinction between cyclic and 
acyclic networks earlier. There is a very good reason for this, but first 
we need to understand the processing of temporal data. Staying on the 
theme of weather prediction, lets imagine we want to predict whether or 
not it is going to rain soon, based on the position of storm clouds. If 
we have data that shows us that a cloud’s position is moving towards us, 
the probability of rain increases. But if we take a snapshot of this 
continuous data, the cloud is stationary and we would need to essentially 
guess which way it is moving. We need to somehow use the information from 
previous data samples to be able to infer where a cloud is moving. To do 
this with neural networks we essentially need to add memory to neurons, 
to be able to remember information from previous time steps. The data 
added in to subsequent time steps is called the hidden state. 
Text can also be sequential data. Think of the sentence “Is it raining?”. 
Looking at any of the words individually, we cannot determine the  
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intention of the text.  With the word “is” we know we are talking about 
the existence of something. When we retain memory of the word “is” and 
combine it with the word “it” we can deduce we are questioning the 
existence of something. If we remember the last two words and combine it 
with the word “raining” we now know the meaning of our sentence. If we 
were looking at the word “raining” without the context of the previous 
two words, we wouldn’t know we were asking about the presence of rain. 
This ability to learn contextual information based on previous characters 
will be incredibly useful when we want to detect DGAs generated with the 
use of dictionaries.  

 
1.3.1. Fully Recurrent Neural Networks 

We can implement this memory in neural networks in a number of ways, but 
one of the simplest examples are fully recurrent neural networks. Here 
each neuron simply passes information to every other neuron in subsequent 
time steps.   
 

 
A visualization of a recurrent neural network.5 

Unfortunately, as standard RNN’s are particularly popular, TensorFlow 
doesn’t have optimized GPU kernels for this specific type of neural 
network, therefore we had to restrict the training of this neural network 
somewhat. Nonetheless, with a simple fully recurrent neural network we 
were able to achieve accuracies of up to 91%. 
 

Epoch 1/15 

4425/4425 [==============================] - 886s 195ms/step - loss: 0.3288 - accuracy: 0.8507 

Epoch 2/15 

4425/4425 [==============================] - 865s 196ms/step - loss: 0.2734 - accuracy: 0.8829 

Epoch 3/15 

4425/4425 [==============================] - 864s 195ms/step - loss: 0.2486 - accuracy: 0.8951 

Epoch 4/15 

4425/4425 [==============================] - 864s 195ms/step - loss: 0.2297 - accuracy: 0.9037 

Epoch 5/15 

4425/4425 [==============================] - 864s 195ms/step - loss: 0.2176 - accuracy: 0.9092 
Training data for a fully recurrent neural network. 

                                                             
5	Adapted	from:	https://commons.wikimedia.org/wiki/File:RecurrentLayerNeuralNetwork.png	
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1.3.1. Long Short-Term Memory 
The results we were able to achieve with fully recurrent networks were 
good, but there is a problem going on behind the scenes. The information 
passed from one timestep to the next, is the aggregation of all the 
information from previous timesteps. As you can see on the below image, 
the information from the first iteration is less and less predominant 
with each iteration. For example, with a really long question, by the end 
of the sentence we can barely remember the sentence started with a 
“what”, making it difficult to deduce the intention of a sentence. 
 

 
A visualization of short-term memory.6 

This problem is called short-term memory, which is caused by the 
vanishing gradient problem during backpropagation. The impact of the 
information learned in earlier iterations, decreases exponentially with 
each subsequent iteration. To combat this we can add gates, to the neural 
network which store the hidden state over multiple timesteps. This way, 
information learned in the first timestep can be reintroduced in much 
later timesteps, preventing this information from being diminished or 
even lost. 
Using a long short-term memory neural network, we were able to achieve 
accuracies up to 93%. These results are fantastic, but we can still make 
improvements. 

Epoch 1/15 

38462/38462 [==============================] - 646s 17ms/step - loss: 0.3196 - accuracy: 0.8512 

Epoch 2/15 

38462/38462 [==============================] - 638s 17ms/step - loss: 0.2366 - accuracy: 0.8968 

Epoch 3/15 

38462/38462 [==============================] - 637s 17ms/step - loss: 0.2055 - accuracy: 0.9110 

Epoch 4/15 

38462/38462 [==============================] - 638s 17ms/step - loss: 0.1867 - accuracy: 0.9193 

Epoch 5/15 

38462/38462 [==============================] - 637s 17ms/step - loss: 0.1715 - accuracy: 0.9262 
Training data for an LSTM neural network. 

 

                                                             
6	Adapted	from:	https://www.youtube.com/watch?v=LHXXI4-IEns	
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1.3.2. Bidirectional Recurrent Neural Networks 
As we discussed earlier recurrent neural networks are great because they 
allow for information to be remembered. But with the examples we looked 
at so far neurons can only learn from previous timesteps, but not future 
ones. But what if they could?  To do this we can use something called a 
bidirectional recurrent neural network. These networks use two layers 
that process the input in different directions in time to produce one 
single output. 
 

 
A visualization of a bidirectional recurrent neural network.7 

As you can see in the above image, one layer processes the text in a 
positive time direction, and another layer processes the text in a 
negative time direction. We then combine the results from the two layers 
to produce an output. With this architecture, neurons are able to use 
contextual information from both directions. We can also use the 
previously discussed long short-term memory in this architecture as well 
to help with the vanishing gradient problem. 
With a bidirectional long short-term memory neural network, we were able 
to achieve 94% accuracy. These results are nearing a production ready 
model, that we could use to reliably detect DGAs. 
 

Epoch 1/15 

38462/38462 [==============================] - 927s 24ms/step - loss: 0.3185 - accuracy: 0.8621 

Epoch 2/15 

38462/38462 [==============================] - 913s 24ms/step - loss: 0.2326 - accuracy: 0.9083 

Epoch 3/15 

38462/38462 [==============================] - 920s 24ms/step - loss: 0.2006 - accuracy: 0.9223 

Epoch 4/15 

38462/38462 [==============================] - 920s 24ms/step - loss: 0.1804 - accuracy: 0.9301 

Epoch 5/15 

38462/38462 [==============================] - 920s 24ms/step - loss: 0.1656 - accuracy: 0.9377 
Training data for a bidirectional LSTM neural network. 

 
 

                                                             
7	Adapted	from:	https://commons.wikimedia.org/wiki/File:Structural_diagrams_of_unidirectional_and_bidirectional_recurrent_neural_networks.png	
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1.4. Hybrid architecture 
We have discussed a lot of neural network architectures with varying 
results, but please remember that these architectures apply to layers 
that we can mix and match as we please. For example, there’s nothing 
stopping us from putting convolutional layers in front of a long short-
term memory layer.  

 

 

 
A neural network with convolutional, long short-term memory and fully 

connected layers. 

You can experiment by combining any number of different layers to achieve 
the best results possible. This is exactly what we did to create our own 
in-house detection capabilities. Surprisingly, we ended up using 
convolutional layers with a number of other layers, even though in our 
earlier test convolutional networks performed the worst. The combination 
of layers that perform the best for your dataset may very well surprise 
you. With our combination of various neural network architectures, we 
were able to achieve an accuracy of up to 98%, however we found that 
models with accuracies between 96-97% were more generalizable and did not 
suffer too much from overfitting. Below you can see our results with a 
larger training dataset over the first 5 epochs. 
 
 

Epoch 1/15 

196713/196713 [==============================] - 4719s 24ms/step - loss: 0.1662 - accuracy: 0.9359 

Epoch 2/15 

196713/196713 [==============================] - 4718s 24ms/step - loss: 0.1298 - accuracy: 0.9514 

Epoch 3/15 

196713/196713 [==============================] - 4720s 24ms/step - loss: 0.1182 - accuracy: 0.9563 

Epoch 4/15 

196713/196713 [==============================] - 4721s 24ms/step - loss: 0.1118 - accuracy: 0.9589 

Epoch 5/15 

196713/196713 [==============================] - 4728s 24ms/step - loss: 0.1076 - accuracy: 0.9605 
Training data for our custom neural network. 
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3. Summary 
 
In this paper we had a look at what domain generating algorithms are and 
why they are used. We looked at the domains’ structure and some basic 
approaches for detecting them. We then dove into the world of neural 
networks to see how they work and how good they are at detecting DGAs. We 
went into quite a bit of depth, but naturally we had to omit some of the 
gritty details. Hopefully you now have a better understanding of DGAs and 
neural networks. Below you can find a summary of the results we were able 
to achieve. Of course, there are many (often better) metrics than simple 
accuracy, but for now it should give us a good indication of a model’s 
performance.  
 
 
Entropy FCNN CNN FRNN LSTM BiLSTM Combination 
60-65% 79-81% 64-65% 90-91% 92-93% 93-94% 96-98% 
 

Accuracy results for the various neural network architectures we had a look 

at. 

When developing our own model, we worked with many publicly available, 
closed source and custom datasets during training. Our datasets in total 
took tens of gigabytes of disk space and contained in excess of a 150 
million domain names. One of the datasets we used for validation 
contained samples from 92 known malware families. Below you can see a 
table containing the validation results for the aforementioned malware 
families. 
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DGA Family Accurac
y DGA Family Accurac

y DGA Family Accurac
y DGA Family Accurac

y 
bamital 100.00% pandabanker 99.99% feodo 100.00% suppobox 99.74% 

banjori 99.97% pitou 65.49% fobber 98.70% sutra 99.31% 

bedep 99.40% proslikefan 93.81% gameover 99.92% symmi 87.69% 

beebone 100.00% pushdotid 95.98% gameover_p2p 99.99% szribi 94.54% 

blackhole 100.00% pushdo 90.12% gozi 95.86% tempedrevetd
d 

96.23% 

bobax 98.00% pykspa2s 99.06% goznym 91.76% tempedreve 96.08% 

ccleaner 100.00% pykspa2 99.34% gspy 100.00% tinba 99.44% 

chinad 99.79% pykspa 97.47% hesperbot 94.38% tinynuke 99.63% 

chir 100.00% qadars 99.68% infy 99.84% tofsee 98.40% 

conficker 97.10% qakbot 99.45% locky 94.11% torpig 89.89% 

corebot 99.64% qhost 60.87% madmax 99.74% tsifiri 100.00% 
cryptolocke

r 99.43% qsnatch 42.93% makloader 100.00% ud2 100.00% 

darkshell 87.76% ramdo 99.98% matsnu 74.42% ud3 95.00% 

diamondfox 76.96% ramnit 97.67% mirai 95.71% ud4 91.00% 

dircrypt 97.83% ranbyus 99.75% modpack 86.88% urlzone 98.67% 

dmsniff 91.00% randomloade
r 100.00% monerominer 99.99% vawtrak 94.85% 

dnsbenchmar
k 

100.00% redyms 100.00% murofetweekl
y 

99.99% vidrotid 98.33% 

dnschanger 97.20% rovnix 99.83% murofet 99.79% vidro 97.40% 

dyre 99.92% shifu 97.90% mydoom 93.65% virut 97.69% 

ebury 99.95% simda 97.49% necurs 97.39% volatileceda
r 

94.18% 

ekforward 99.73% sisron 100.00% nymaim2 67.74% wd 100.00% 

emotet 99.88% sphinx 99.73% nymaim 91.32% xshellghost 100.00% 

omexo 100.00% padcrypt 99.33% oderoor 97.92% xxhex 100.00% 

 

The prediction accuracies of our model, per malware family. 

 
 
As a comparison we decided to test the accuracy of the simple entropy-
based detection method we started this paper with. We took the same 
dataset, we trained our neural network with and created a balanced 
version of it, meaning there were equal DGA and non-DGA domains. This is 
important because an unbalanced dataset would very heavily skew the 
results in the case of the entropy-based method. With neural networks 
it’s less important to use a balanced dataset, as it can be both a 
benefit and a detriment depending on the scenario. In most cases you 
should start with an equal number of samples (where possible), but you 
can change the balance of the different classes as you see fit. We then 
calculated our optimal boundary value, and used it to make predictions 
for our validation dataset. 
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DGA Family Accurac
y DGA Family Accurac

y DGA Family Accurac
y DGA Family Accurac

y 
bamital 97.40% pandabanker 38.69% feodo 89.58% suppobox 13.37% 

banjori 77.43% pitou 0.01% fobber 56.20% sutra 57.33% 

bedep 78.26% proslikefan 5.96% gameover 99.99% symmi 43.93% 

beebone 40.95% pushdotid 15.42% gameover_p2p 99.55% szribi 4.90% 

blackhole 80.02% pushdo 10.13% gozi 58.97% tempedrevetd
d 

9.20% 

bobax 47.67% pykspa2s 25.92% goznym 15.11% tempedreve 20.10% 

ccleaner 19.23% pykspa2 26.37% gspy 63.27% tinba 33.36% 

chinad 96.40% pykspa 18.66% hesperbot 43.82% tinynuke 99.23% 

chir 51.00% qadars 78.16% infy 10.35% tofsee 0.00% 

conficker 9.83% qakbot 72.14% locky 39.63% torpig 6.94% 

corebot 95.16% qhost 26.09% madmax 37.89% tsifiri 0.00% 
cryptolocke

r 63.56% qsnatch 0.14% makloader 100.00% ud2 93.93% 

darkshell 0.00% ramdo 16.18% matsnu 46.87% ud3 88.33% 

diamondfox 2.92% ramnit 54.79% mirai 67.14% ud4 4.00% 

dircrypt 56.96% ranbyus 70.03% modpack 9.38% urlzone 64.79% 

dmsniff 4.00% randomloade
r 20.00% monerominer 78.20% vawtrak 10.19% 

dnsbenchmar
k 

100.00% redyms 67.65% murofetweekl
y 

100.00% vidrotid 32.67% 

dnschanger 18.65% rovnix 97.87% murofet 68.08% vidro 37.65% 

dyre 98.60% shifu 7.16% mydoom 0.64% virut 0.00% 

ebury 85.20% simda 3.12% necurs 53.97% volatileceda
r 

65.86% 

ekforward 0.00% sisron 11.82% nymaim2 36.40% wd 99.79% 

emotet 77.75% sphinx 80.71% nymaim 12.63% xshellghost 54.00% 

omexo 100.00% padcrypt 3.77% oderoor 13.92% xxhex 0.00% 

 

The prediction accuracies of a simple entropy-based detection method, per 

malware family. 

As you can see the results are substantially worse than our neural 
network model, and as we discussed earlier in the paper, it cannot handle 
natural language domains. It also struggles with very short domains, 
where there is not enough information to make a good prediction and the 
accuracy begins to devolve to a random guess or even worse. 
We often associate machine learning with graphics cards or even tensor 
processing units, and you may assume that our detection method would 
consume a load of resources to make predictions. However, this is not 
really the case. We tested the throughput of our Splunk search command 
implementation and summarized the results you can expect with regular 
server hardware below. As you can see no special hardware is required to 
run these detection methods. Keep in mind that these throughputs are 
measured with unique domains. In a real-world scenario, with 
deduplication and a whitelist, you will struggle to saturate even a 
single vCPU. 
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vCPU Minimum RAM Throughput 
1 2 GB ~ 28.000 domains / 

minute 
2 3 GB ~ 62.000 domains / 

minute 
4 4 GB ~ 108.000 domains / 

minute 
8 4 GB ~ 188.000 domains / 

minute 
16 7 GB ~ 300.000 domains / 

minute 
 
 
We use these very methodologies to detect DGAs in our Fusion Center. We 
research and develop many other tools, both in the field of machine 
learning and other new technologies, to help secure our client’s 
infrastructures. To find out more about our Fusion Center and how it 
differs from a regular SOC, visit https://blackcell.io/cyber-fusion-
center/.  
 
 


