

TLP:CLEAR

TLP:CLEAR

Detection Engineering

2

TLP:CLEAR

TLP:CLEAR

Table of Content
1. Introduction ... 3

2. Detection Lifecycle ... 4

2.1. Discovery ... 4

2.2. Research .. 4

2.3. Development .. 5

2.4. Testing.. 5

2.5. Deployment .. 5

2.6. Continuous Tuning & Improvement ... 5

3. Prioritizing Detection Efforts ... 6

3.1. Pyramid of Pain .. 6

3.2. MITRE ATT&CK Heatmaps: Threat-Informed Prioritization 7

4. Alert Classification .. 8

5. Detection Engineering Principles ... 9

6. Detection Metrics .. 9

7. Detection Formats .. 10

7.1. Sigma ... 10

7.2. TOML ... 10

8. Adversary Emulation for Detection Validation ... 11

9. Detection Management .. 11

9.1. Core Principles of Detection as Code ... 11

9.2. Example Detection as Code pipeline .. 12

3

TLP:CLEAR

TLP:CLEAR

1. Introduction

In today’s rapidly evolving threat landscape, Detection Engineering has emerged as a critical

discipline in cybersecurity, enabling organizations to identify and respond to malicious

activities.

Detection Engineering is not just about writing detection rules, it is a structured approach that

involves understanding adversary behavior, designing detection logic, continuously refining

detection coverage, and integrating detections into security operations workflows. By

leveraging modern security tools such as SIEM (Security Information and Event Management),

EDR/XDR (Endpoint/Extended Detection and Response) and threat intelligence platforms, log

analytics systems, organizations can systematically craft, test, and optimize detections to

uncover both known and emerging threats.

Detection Engineering Benefits:

Improved Threat Detection: Detection Engineering focuses on behavior-based detection,

allowing organizations to better identify threats.

Leverages the MITRE ATT&CK Framework: By mapping detections to MITRE ATT&CK

techniques, security teams ensure comprehensive coverage of real-world attack behaviors.

Reduced False Positives & Alert Fatigue: Detection Engineering helps build detections that

are precise, contextualized, and high-fidelity, reducing unnecessary alerts and improving

security operations efficiency.

Empowers Threat Hunting: Detection Engineering enhances threat hunting by providing

high-fidelity use cases for proactive threat identification.

Enhances Log Visibility: Effective detection relies on clear visibility into logs, telemetry, and

data sources. Detection Engineering ensures that organizations collect and analyze the right

logs without overwhelming their security tools with unnecessary data.

Forces Attackers to Work Harder: By detecting and responding to Tactics, Techniques, and

Procedures (TTPs) rather than Indicators of Compromise (IOCs), attackers must significantly

alter their methods to avoid detection.

4

TLP:CLEAR

TLP:CLEAR

2. Detection Lifecycle

The most effective approach for creating and maintaining detections is by adhering to a

structured, methodical process.

The Detection Lifecycle is a structured approach to developing, testing, deploying, and refining

security detections. It ensures that security teams continuously improve their detection

capabilities by iterating through a cycle of threat intelligence analysis, rule creation, validation,

deployment, monitoring, and tuning.

The Stages of the Detection Lifecycle:

• Discovery

• Research

• Development

• Testing

• Deployment

• Continuous Tuning & Improvement

2.1. Discovery

The initial step in the lifecycle is gathering detection requirements. This phase can be initiated

from multiple sources. Common sources include SOC requests, red team assessments, and

threat intelligence reports, each contributing valuable insights into potential threats that

require monitoring.

2.2. Research

This phase is essential for defining the detection logic to be implemented and identifying the

necessary telemetry (Event Logs, Mirrored network traffic, etc.). If multiple detection

requirements exist, this stage also involves prioritizing them to ensure the most critical threats

are addressed first.

5

TLP:CLEAR

TLP:CLEAR

2.3. Development

Building upon the insights gained from the Research phase, the objective here is to

implement the previously identified detection logic. This translates research findings into

practical threat detection rules, moving from theoretical understanding to operational

capability.

2.4. Testing

This process involves testing with two key data types: known good data, which helps prevent

false positives by ensuring benign activities do not generate alerts, and known bad data, which

confirms that the detection effectively identifies malicious behavior.

While both data types have their complexities, a general best practice is to ensure that known

good data is sourced from an environment that mirrors the target environment as closely as

it can, while known bad data is typically obtained through adversary emulation exercises.

This phase may also incorporate unit testing within CI (Continuous Integration) pipelines to

verify that specific requirements, such as the presence of required fields and the correctness

of their values, are met.

2.5. Deployment

Deploying the finalized detection rule into a production environment. This process is most

effective when implemented through a Detection-as-Code (DaC) pipeline leveraging CD

(Continuous Deployment) automation to ensure seamless and controlled deployment.

2.6. Continuous Tuning & Improvement

It is important to ensure detections remain effective, accurate, and relevant over time. Threat

actors continuously evolve their TTPs (Tactics, Techniques, and Procedures), and if detections

are not regularly updated, they risk becoming outdated, leading to false negatives (missed

threats). Changes in the monitored environment can over time result in excessive false

positives which also necessitate detection rule tuning to prevent alert fatigue.

6

TLP:CLEAR

TLP:CLEAR

3. Prioritizing Detection Efforts

Prioritization plays a crucial role in Detection Engineering by helping us address two key

questions: What should be detected, and how?

3.1. Pyramid of Pain

Created by David Bianco the Pyramid of Pain visually describes the difficulty adversaries face

when defenders focus detection efforts on different types of threat indicators. The pyramid

categorizes indicators from the least to most difficult for attackers to alter:

Figure 1: The Pyramid of Pain

By leveraging the Pyramid of Pain, organizations can shift detection efforts towards higher-

value indicators—specifically, techniques and behaviors at the top of the pyramid that require

attackers to expend considerable effort to change.

Conversely, focusing on easily changed indicators (such as hashes or IP addresses) results in

limited defensive value, as adversaries can quickly evade detection by making minor

modifications.

The higher you move on the pyramid:

• The more strategic and effective your defenses become.

• The greater the operational burden placed on attackers.

• The longer lasting your defensive measures become, resulting in greater resilience.

7

TLP:CLEAR

TLP:CLEAR

3.2. MITRE ATT&CK Heatmaps: Threat-Informed Prioritization

The MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) framework is

a globally recognized knowledge base that documents real-world adversary tactics,

techniques, and procedures (TTPs) used during cyberattacks. Developed and maintained by

MITRE, ATT&CK provides a structured way for security teams to understand, analyze, and

defend against cyber threats. Tactics represent the high-level objectives that adversaries aim

to achieve during an attack. Techniques describe specific methods adversaries use to achieve

their objectives (tactics). Procedures describe how specific threat actors or malware use these

techniques in real-world attacks.

A MITRE ATT&CK Heatmap is a visual representation of an organization's detection coverage

across different ATT&CK techniques. Heatmaps help security teams prioritize detection

engineering efforts by highlighting:

• Which techniques are well-detected?

• Where are detection gaps?

• What techniques are commonly used by adversaries targeting the organization?

An example of a heatmap is the TI-Based Retrospective TTP Heatmap available on github.

Figure 2: The Annual_TI_based_Retrospective_TTP_report_heatmap

https://github.com/blackcellltd/Heatmaps/blob/09f08ff5502466083ccc2fb88567b967ad0ad3ba/annual_ti_based_retrospective_ttp_report___2024.json

8

TLP:CLEAR

TLP:CLEAR

4. Alert Classification

Alert classification is the process of categorizing the security events that have (or haven not)

been generated by detection rules.

Events generally fall into four categories:

• True Positives (TP)

• False Positives (FP)

• True Negatives (TN)

• False Negatives (FN)

True Positives occur when a detection correctly identifies malicious activity, allowing security

teams to respond appropriately.

False Positives, on the other hand, are benign activities mistakenly flagged as threats, leading

to unnecessary investigations and alert fatigue. This type is typically the most common. False

positives are not necessarily a problem, as long as they are properly managed and kept under

control.

True Negatives represent legitimate activity that is correctly ignored, ensuring the system does

not generate unnecessary alerts.

False Negatives are the most dangerous, as they indicate missed threats—malicious actions

that bypass detection, leaving the organization vulnerable.

Striking the right balance between reducing false positives while minimizing false negatives is

a key challenge in Detection Engineering, requiring continuous rule maintenance.

9

TLP:CLEAR

TLP:CLEAR

5. Detection Engineering Principles

The objective of Detection Engineering is to develop efficient, scalable, and high-fidelity

detections.

To achieve this, it is essential to follow key principles:

• Prioritize inclusion-by-exception over exclusion-by-exception to avoid an endless

cycle of reactive adjustments.

• Utilize correlation strategically but avoid overly broad rules that may introduce

brittleness and enable easy evasion.

• Focus on detecting behaviors rather than IOCs, unless IOC-based detection is the

only viable approach.

• Ensure simplicity in rule design, as overly complex rules lead to even more difficult-

to-interpret alerts.

• Reducing false positives can sometimes take priority over eliminating false negatives,

as excessive alerts can lead to analyst fatigue and decreased operational efficiency.

• Detection logic should be formatted to clearly reflect logical precedence and

grouping for better readability and maintainability.

6. Detection Metrics

Detection metrics serve as a quantifiable approach to evaluating the performance of security

detections, helping organizations assess the efficiency, accuracy, and overall impact of their

detection strategies.

The most critical detection metrics include:

Alert count: This metric represents the number of alerts generated by a detection that

requires analyst review. A high alert count may indicate a noisy or overly broad detection

rule, leading to increased false positives and alert fatigue.

Average Time Spent per Detection: Measures the average time an analyst spends

investigating alerts triggered by a specific detection. High time per detection suggests

insufficient context, missing evidence, or poor alert documentation, forcing analysts to spend

more effort investigating. Low time per detection could indicate that analysts are not

thoroughly reviewing alerts, possibly leading to oversight.

10

TLP:CLEAR

TLP:CLEAR

Detection Coverage: Evaluates how well an organization's detections map to real-world

attack techniques and adversary behaviors. Often visualized using MITRE ATT&CK heatmaps,

this metric helps identify gaps in detection capabilities, ensuring the organization monitors

key attack vectors. A low detection coverage score means that certain MITRE ATT&CK

techniques are not effectively detected, leaving blind spots in the security posture.

7. Detection Formats

Storing detection content effectively is crucial for ensuring scalability, automation, and

maintainability in Detection Engineering.

7.1. Sigma

Detection logic should be stored in Sigma, an open-source, generic signature framework

specifically designed for writing SIEM-agnostic detection rules in YAML.

It allows security teams to create structured detection rules that can be converted into query

formats specific to different SIEMs and log analysis platforms (e.g., Splunk, Elastic, Sentinel,

QRadar). Instead of writing separate queries for each tool, Sigma rules provide a standardized

way to define detections, making them highly portable and reusable.

Public Sigma translators, such as sigconverter.io or uncoder.io, allow users to convert Sigma

rules into platform-specific queries, enabling seamless integration across various security

tools. By leveraging Sigma, organizations can improve detection consistency, enhance threat

hunting, and simplify rule management across multiple security environments.

7.2. TOML

A highly effective approach to storing detection content is by using TOML files. TOML (Tom’s

Obvious, Minimal Language) is a lightweight, human-readable configuration format designed

for clarity, simplicity, and ease of use. It is widely adopted for configuration files across various

programming environments due to its structured yet straightforward syntax. Compared to

JSON and YAML, TOML offers improved readability while maintaining strong data structure

support. Additionally, TOML is highly script-friendly, making it an excellent choice for

automating detection processing within CI/CD pipelines, ensuring seamless integration and

validation of detection logic.

11

TLP:CLEAR

TLP:CLEAR

8. Adversary Emulation for Detection Validation

Adversary emulation is the process of simulating real-world cyber threats by replicating the

tactics, techniques, and procedures (TTPs) of known threat actors. It is used to test an

organization’s detection capabilities, incident response readiness, and security controls.

Atomic Red Team is an open-source adversary emulation framework developed by Red

Canary. It provides lightweight, easy-to-execute tests that simulate real attack techniques

mapped to MITRE ATT&CK. These tests allow security teams to safely validate detections, tune

alerts, and improve defensive strategies without the complexity of full-scale red teaming.

Atomic Red Team is highly extensible, allowing users to easily create and customize their own

atomic tests to simulate specific attack techniques.

Atomic tests are stored in YAML format, which may not always be the most intuitive or user-

friendly to work with. To address this, AtomicGen was developed, providing a GUI-based

approach.

To run tests, an execution framework is also needed. The most commonly used tool for this

purpose is Invoke-Atomic, a PowerShell-based framework designed specifically for executing

Atomic Red Team tests.

9. Detection Management

Detection as Code (DaC) is a modern approach to developing, managing, and maintaining

security detections using software engineering principles. It treats detection rules and logic as

structured code, enabling security teams to apply version control, automation, testing, and

continuous integration (CI/CD) practices to threat detection. By implementing DaC,

organizations can improve detection accuracy, streamline workflows, and ensure consistent

threat monitoring across multiple security tools.

9.1. Core Principles of Detection as Code

• Version Control & Collaboration: Uses Git or similar version control systems to track

changes, allowing teams to collaborate on detection rules and maintain an audit trail

of modifications.

• Automation & CI/CD: Enables automated testing, validation, and deployment of

detections, ensuring they are effective before production deployment.

12

TLP:CLEAR

TLP:CLEAR

• Scalability & Consistency: Provides a standardized approach to managing detections

across multiple security tools and environments.

• Testing & Validation: Ensures detection rules are accurate, high-fidelity, and

optimized before deployment, reducing false positives and negatives.

9.2. Example Detection as Code pipeline

A representative example of a DaC pipeline is structured as follows. Detection rules are written

in a structured format, such as TOML files, and stored in a version-controlled Git repository.

Version control ensures that all changes are tracked, reviewed, and auditable, allowing security

teams to collaborate effectively while maintaining a history of rule modifications.

Once a new detection rule is added or an existing rule is updated, the CI/CD pipeline

automatically initiates a validation process. This process includes syntax checks and rule data

validation to ensure the rule functions correctly.

If the validation phase is successful, following a peer-review the pipeline automatically deploys

the validated detection rules to production environments, such as SIEMs, EDRs, or XDR

platforms. This ensures that new or updated detections are seamlessly integrated into the

organization’s security monitoring infrastructure without requiring manual intervention.

	1. Introduction
	2. Detection Lifecycle
	2.1. Discovery
	2.2. Research
	2.3. Development
	2.4. Testing
	2.5. Deployment
	2.6. Continuous Tuning & Improvement

	3. Prioritizing Detection Efforts
	3.1. Pyramid of Pain
	3.2. MITRE ATT&CK Heatmaps: Threat-Informed Prioritization

	4. Alert Classification
	5. Detection Engineering Principles
	6. Detection Metrics
	7. Detection Formats
	7.1. Sigma
	7.2. TOML

	8. Adversary Emulation for Detection Validation
	9. Detection Management
	9.1. Core Principles of Detection as Code
	9.2. Example Detection as Code pipeline

